(3) 解像度リアル 2,400dpi を実現したデジタルカラー複写機用露光装置

(採用機種:DocuCenter C6550I, DocuColor 1256GA, 他)

市川順一、池田周穂、太田明*、植木伸明**

富士ゼロックス株式会社 技術開発本部、画像制御システム開発部*、光システム事業開発部**

1. はじめに

レーザプリンタ/複合機の開発はオフィス市場への 適合性を向上させる一方で印刷・写真市場にも対応す べく高画質化が進められており、DTP やグラフィック のカラー専門市場における高画質要求、プロダクショ ンやオンデマンド印刷領域における高画質、高速化要 求はますます増大していくものと考えられている。

そのような市場要求のなかで電子写真の高画質高速 化における重要な技術の一つが富士ゼロックス㈱では ROS (Raster Output Scanner) と称しているレーザ 露光装置の技術である。今回、当社独自の半導体レー ザ技術により新たに 32 ビームの発光源を持つ面発光 型 半 導 体 レ ー ザ VCSEL(Vertical-Cavity Surface-Emitting Laser:図 1)、専用光学系および レーザ駆動 IC を合わせて開発することによりリアル 2400dpi、100 枚/分を実現する ROS の開発に成功した。

図 1. VCSEL

2400dpiの ROS を搭載することによりレーザプリ ンタ/複合機においては画像処理のフルデジタル化も 可能となり高精細な印刷に迫るレベルの高画質を提供 することが可能となった。

本技術は 2003 年 8 月にデジタルカラー複合機

DocuColor 1256 GA (カラー12.5枚/分、白黒 50枚/ 分)に搭載、業界初の解像度リアル 2400dpi を実現し た。2004年9月にはカラーオンデマンドパブリッシン グシステム DocuColor 8000 Digital Press(カラ ー・白黒共 80枚/分)に、そして 2005年1月にはデジ タル複合機 ApeosPort C6550I/DocuColor C6550 I (カラー50枚/分、白黒 65枚/分:図 2)に搭載され、 中速から高速領域にわたる範囲で 2400dpi の高画質を 提供している。

⊠ 2. ApeosPort C6550 I / DocuColor C6550 I

本稿では、VCSEL ROS の主要技術(VCSEL,光学系、 駆動 IC)、多数ビーム固有の画質課題、及び VCSEL ROS による 2400dpi 化の効果について説明する。

2. VCSEL ROS のコンセプト

ROS はレーザビームをポリゴンミラーと呼ばれる回 転多面鏡によって偏向し、f θ レンズと呼ばれる光学系 によって感光体上をレーザビームスポットで走査露光 するものである(図 3)。

図 3. ROS の構成

今回、構造上1チップ上に多くの発光点を設けることが容易な VCSEL に着目し、従来は1~4本程度であっ

たビーム数を 32 と大幅に 増やし、単位時間当たりの 走査線本数を大幅に増や すことによって 2400dpi, 100 枚/分を実現する ROS を実現させることを考え た(図4 8×4 VCSEL)。

 \boxtimes 4. 8×4 VCSEL

従来の2ビームと32ビームによる走査の比較を図5 に示す。ビーム数を増やすことにより少ない走査回数 で多くの走査線を書き込むことができることがわかる。

3. VCSEL

富士ゼロックスにおけるVCSEL開発の歴史は、1990 年代半ばの 780 nm帯大規模二次元アレイ素子に始まる。 1999 年にマトリックス駆動型 12×120 VCSELアレイ¹⁾ を発表し、その後独立駆動型に転じ、8×4 VCSELアレ イの開発に至った。

プリンタ用 VCSEL の開発に対しては波長 780 nm にお ける基本横モード発振での高出力化、及び偏光制御性 の向上が大きな技術課題であった。

今回我々が開発した酸化型VCSELの構造図を図 6 に

示す。酸化アパーチャ (Oxidized portion)の径 を狭くすると基本横モー ド発振にはなるが、活性 層体積が減少して光出力 が低下する。そこで我々 は電流注入のための電極 として用いている金属層 (Metal aperture)をモー

⊠ 6. VCSEL cross section

ド制御に用い、高次横モードをカットオフして基本横 モード出力を引き上げる試みを行った²⁾。

図 7 (a) は電極アパーチャ径 (D_m) を横軸に、高次横 モードを含む最大光出力 (Total Power) 及び基本横モ ード発振での最大光出力 (Fundamental mode power)を 縦軸に示したものである (酸化アパーチャ径 D_{ox} は 3.5 μ m)。また、Fig. 5 (b) は D_m が 4 μ m時の発振スペクトル を示したものである。 D_m の最適化によって 3mWを超え る基本横モード出力を得られていることがわかる。

基本横モード出力の確保に続く課題がVCSELの偏光 制御性である。傾斜エピタキシャル基板を用いた偏光 制御に実績はあるものの、特殊基板のためコスト高で あるという欠点があった。我々はマトリックス駆動型 アレイで培われた偏光制御技術³⁾を足がかりに、VCSEL の偏光特性と横モード特性との関係に着目し、低転位 基板として広く流通している2度オフ基板を使用した 偏光制御法を案出した。

図8は図7(b)の条件における光出力をグラン・トム ソンプリズムを通して測定し、[01-1]および[011]方向 の各成分に分けた偏光 *L-I* 特性である。

⊠ 8 Polarization resolved *L*−*I* curve and polarization mode suppression ratio for D_{ox} of 3.5 µ m ϕ device with D_{a} of 4 µ m ϕ

偏光モード抑圧比 (PMSR) は最大 17dB に達し、本素 子の偏光が良好に[01-1] 方向に制御されていること がわかる。電極アパーチャの効果により基本横モード 性が向上した素子は、2 度オフ基板のわずかな異方性 に対しても、しきい値利得の差を発現し易くなるもの と考えられる。

4. 光学系

マルチビーム対応光学系の設計においては、図9に 示すような Bow 差やビーム間隔誤差による画質欠陥が 発生しないよう考慮する必要がある。

Bow 差はポリゴンミラーや f θ レンズに対して副走 査方向(ビームの走査方向と直交する方向)に角度を もって入射すると発生する。また、複数のビームが非 平行な状態で感光体に対して入射すると、ROS 感光体の距離に誤差があったときにビーム間隔誤差が発生しやすくなる。

今回我々が採用した光学系は図 10 に示すようにレ ーザとポリゴンミラー間、そしてポリゴンミラーと感 光体間を共にアフォーカル系とし、ポリゴンミラーと 感光体間を走査方向のみパワーを有する f θ レンズ系 と副走査方向のみパワーを有する 2 枚のシリンドリカ ルミラーを用いることによって、Bow 差ゼロ、Defocus によるビーム間隔変動ゼロの設計となっている。

また、VCSEL は端面発光レーザと異なり、レーザの後 ろ側からビームを出力させることができないため(図 6)、レーザから射出されたビームをレーザとポリゴン ミラー間にハーフミラーを配置し、ビームの一部を分 離して、その光量をフォトダイオードで検出している。

5. 駆動 IC

5-1 電圧駆動・電圧電流駆動

VCSEL は構造上、基本横モード出力を確保すると内 部抵抗 R が数百Ωと高くなる特徴がある(端面発光レ ーザは 10Ω以下)。このため端面発光レーザで用いら れている電流駆動方式では変調速度が一桁以上遅くな ってしまう。

図 11(a)に電流駆動方式で VCSEL を駆動した場合の 電流・電圧・光量の波形を示した。矩形の電流波形に 対し、光量は図 12 に示したレーザ内部抵抗 R と寄生容 量 C の積である時定数 τ で立ち上がるため、内部抵抗 の高い面発光レーザは電流駆動ではプリンタで要求さ れる変調速度を得 ることができない。

これに対して矩 形の電圧波形を入 力する図 11(b)の 電圧駆動方式は、内 部抵抗によらず立 ち上がりを速くす ることができる。と ころがこの駆動方 式は点灯による自 己発熱によってレ ーザの電圧一電流 特性が変わるため、 光量が徐々に増大 してしまう。

そこで今回我々 は図 11(c)に示す 電圧電流駆動方式 を開発した。この方 式は立ち上がり時 だけ電圧で駆動し

図 11. Laser Drive Method

図 12. Equivalent circuit

1000000

1000000

www

1000000

て立ち上がりを早め、その後は電流駆動にすることで 光量安定性を確保している。

図 13 は電圧駆動と電圧―電流駆動の違いを連続点 灯時とそれに続く変調時の光量で示している。電圧駆 動では連続点灯時にレーザの温度が上昇して光量が増

大し、変調時に voltage は駆動電流が温 current (度の低下と共に laser power 減り光量も減少 (a) Laser Power variation with Voltage Drive voltage するのに対し、 current 電圧電流駆動で laser power は立ち上がり後 (b) Laser Power variation with Voltage & **Current Drive** は電流駆動とな 図 13. Laser power variation り温度が変わっ

ても駆動電流は一定で駆動電流の変動による光量変動 が生じない。今回の VCSEL は定電流駆動時の発熱によ

る光量変動が端面発光レーザよりも小さいことが実験 により確認されている。

5-2 高速光量制御

レーザプリンタでは光センサを用いて定常的に光量 を検出し、常に所望の光量にレーザを制御しているが、 VCSEL ROS においては光センサの受光電流が小さいと いう問題がある。

マルチビームの光量制御ではレーザを順次点灯し各 レーザの光量を制御することが一般的であるが、VCSEL は1ビームの出力が端面発光レーザよりも少なく、さ らに光量検出のためにハーフミラーでビームを分離し て検出するため、センサに入射する光量が微弱で受光 電流が小さい。

受光電流が小さいと光検出の応答性が悪くなり光量 制御が不安定になるので、通常このような場合コンデ ンサで比較器出力の応答性を落として安定性を確保す る。ところが応答性を落とすと各レーザ間の光量ばら つきが原因で制御速度が低下してしまう。そこで今回 応答性を抑えるコンデンサ(Cfb)をレーザ毎に設けた。 図14はVCSEL光量制御の基本構成を示したものである。

図 14. VCSEL APC circuit

従来は一つの Cfb に対してレーザ側のみを切り替え ていたが、今回の回路は各レーザに対応した Cfb を設 け、レーザ切り替えと同時に Cfb をレーザ毎に切り替 えることでレーザ毎の特性ばらつきとは無関係に短時 間に光量制御が収束させることができた。図15は全レ ーザを光量制御した後にレーザを順に 32 ビーム点灯 した場合の実際の光量波形で光量制御が正確に行なわ れていることがわかる。

🗵 15. Ch1 to ch32 laser power after APC

6. 画質課題

マルチビームで複数の走査線を一括露光すると走査 周期が低周波数となり、主走査方向の周期的な筋ムラ (Stitching)として視認されやすくなる。2 ビームによ る 600dpi 走査の場合、走査周期は 0.084mm 周期と人間 の目では視認できない高周波であるが、2400dpi を 32 ビームで一括走査すると、その周期は 0.34mm 周期とな り、Stitching が目立つようになる(図 16)。

Stitching の発生要因には前述した光学系によるビ ーム間隔誤差だけでなく、複数ビーム間の光量ムラ、 ビーム径のばらつき、ポリゴンミラー・感光体の速度 誤差、感光体の相反則不軌等の様々な要因がある。こ の問題に対して、我々は「二重露光」および「ビーム 間独立光量制御」によってStitchingを抑制できるこ とを確認した。二重露光とは走査と走査を半分ずつ重 ねながら露光することによってStitchingを目立たな いようにし(図 17)、ビーム間独立光量制御はつなぎ目 部分のビームの光量を他のビームを変えることによっ て Stitching を低減させるものである(図 18)。

7. リアル 2400dpi による画質改善

VCSEL ROS による 2400dpi 化に対応したデジタルスク リーン技術 MACS (Micro Accurate Control Screen)に より、従来のレーザプリンタ/複写機で発生しがちであ ったグラデーションやハーフトーンのトーンジャンプ (色の段差)を抑え、なめらかな階調表現を実現し、ハ イライトの再現性が向上することが可能となった。

従来の 600dpi の場合、600dpi の画素毎の変調(レー ザの 0N/OFF)では十分な階調性が得られなかったため、 図 19(a)のように1 画素内の点灯幅(パルス幅)を変 更することによって中間調を再現させていた。このよ うなスクリーンでは短いパルスの応答性のばらつきに よりハイライトの再現性が不安定であり、グラデーシ ョンでトーンジャンプが発生するという問題があった。 VCSEL ROS によって解像度が 2400dpi になると、図 19(b)のように画素が細かくなるので、スクリーン線

図 19. 解像度による画像構造の違い

数・形状・角度の自由度が増えパルス幅変調回路を用 いる必要がなくなり、従来の問題を解決することが出 来るようになった。図 20 は 2400dpi 化によって実現す ることができたスクリーンの例である。

図 20. 2400dpi でのスクリーンの例

8. 画像処理でのカラーレジストレーション補正

2400dpi 化により、従来は機械的に補正していたカ ラープリントの色ズレを画像処理によって補正するこ とが可能となった(IReCT: Image Registration Control Technology)。

図 21 のように本来は重な っているべき画像がスキュ ーして色ずれが発生した場 合、従来は露光装置のミラー やレンズを動かす等の機械 的な処理によって補正を行 っていた。

IReCT はこのスキューを画

像データ処理によって補正するものである。図 22 上側 のように画像データが水平でも出力画像がスキューし ている場合、IReCT は画像データを逆側にスキューさ

図 22. IReCT によるスキュー補正

せて出力画像のスキューを補正する。

600dpi や1200dpi では、IReCT によって生じる出力 画像の段差がプリント上に筋として現れてしまう問題 があったが、2400dpi ではその段差が 10μm と小さい ため筋を発生させることなく画像処理によってスキュ ーを補正することが可能となった。

9. おわりに

VCSEL ROS は 32 本という従来に無いマルチビーム化 を実現し、高解像度化・高速化の技術トレンドを大き く変える技術である。

本技術は当社の多くの新商品に搭載され、従来にな い高画質・高生産性という価値の提供を始めている。 オフィス市場だけではなく印刷・写真市場における高 画質化の要求へ具体的に答えることができるようにな るきっかけを作ることが出来、今後のますますの電子 写真技術の発展、電子写真のあらたな事業エリアへの 拡大につながるものと考える。

10. 参考文献

- J. Sakurai, et al., IEEE/LEOS Summer Topical Meeting, San Diego, 26-30 July 1999, WB2.2.
- N. Ueki, et al., IEEE Photon. Technol. Lett. 11, pp. 1539-1541, 1999.
- N. Ueki, et al., Jpn. J. Appl. Phys. 15, L33-L35, 2001.