第 章 講演会

I-1 有機デバイスの進展と最近のトピックス

富山大学工学部 電気電子システム工学科 助教授 岡田 裕之

講演会:「有機デバイスの進展と最近のトピックス」
講師:岡田 裕之
開催日:2005年7月19日
会場:(社)ビジネス機械・情報システム産業協会 第1・2 会議室
参加者:21名
記:伊藤 昇*¹

1.はじめに

近年、画像素子、トランジスタ、など電子デバイス 材料として、エコロジー、コスト、フレキシビリティ ー、薄層形成の容易さ、などから有機材料が注目を浴 びている。古いところでは電子写真有機感光体がある が、最近ではその応用展開とも言える有機 EL が話題を さらっている。それ以外に様々な応用の可能性を秘め ており、官・学・民が競って研究や応用開発を行って いる。JBMIA に参画している企業の多くは、これらの 技術研究・開発を手がけていることに鑑み、本小委員 会では、この分野で先端を行かれる、富山大学工学部 助教授・岡田裕之様をお招きし、ご講演を賜った。

2.概要

本ご講演は次のような構成となっていた。

- ・有機 EL 素子について
- ・インクジェットを利用した薄膜形成技術
- ・自己整合隔壁デバイス
- ・有機デバイスの今後の応用展開

3.内容

最初に述べたデバイスは、いずれも如何にして均一 な薄層を作成するかが、極めて重要である。岡田先生 は、この方法として、簡便なインクジェット技術に着 目され、本協会の参画企業の一社と共同研究をされて おり、本稿ではその成果も含め、ご報告いただいた。

3.1 有機 EL

先にも述べたが、有機デバイスの代表格は有機 EL であろう。Fig.1 に有機 EL の発光原理を示す。図から 分かるように、既に製品技術として確立されている、 電子写真の有機感光体の応用とも言える。異なるのは、 電荷が結合したときにエネルギーを光に変える素子を 必要とする点である。有機 EL は、次世代薄層画像デバ イス、照明として非常に期待され、大学、国立研究所、 企業がしのぎを削っており、産学共同研究開発も盛ん である。既に携帯の画面や小型ディスプレーに展開さ れているが、その課題としては、現状テレビ並みの大 画面対応、消費電力、寿命、水分を嫌う、などの点で ある。寿命は、現行のテレビの 1 / 10 程度であり、実

^{*1} 技術調查小委員会委員

用化に向けては更なる研究が必要である。また、外気の水分から守るため、現状ではITO 電極の上からガラスで完全に封止している。この点を有機材料でカバーできれば、応用範囲が格段に広がるものと思われる。

電子輸送層内で、電子とホールが結合すると、 高いエネルギーを持つ励起子が生成される。 この状態から通常のエネルギーレベルになる 際に、エネルギーが光に変換され、発光する。 当然ながら、層は薄いほうが電荷移動速度が 速いので、応答性が良くなる。

Fig.1 有機 EL の発光原理

3.2 インクジェット技術の有機 EL 作成への展開

有機 EL は、薄膜発光部で正負の電荷が結合した折 のエネルギーを光に変えることで発光する。自発光ゆ えに、角度を変えても画像に変化がない点が優れる。 また発光効率は 80lm/W で、蛍光灯並みである。

有機物において電荷がスムーズに輸送されるため には、薄層形成が不可欠となる。その方法は色々ある が、インクジェットの応用は、材料利用効率・高精細 フルカラー化・大面積対応その他必要な用件をバラン スよく達成できる有望な方法である。そして、何より 極めて簡便である点が優れている。

インクジェットによる高精細薄膜形成は、通常のイ ンクジェットにおけるパラメータ制御とほぼ同じであ り、詳細は添付の資料を参照いただきたいが、最大の 課題は、均一薄膜を作成する点である。乾燥時に、ど うしてもドットのエッジが盛り上がるからである。

岡田先生の研究室では、インクジェットを適用した 自己整合隔壁デバイスを開発され、プロセスが容易で 歩留まりに優れる方法の確立に成功された。この方法 では、輝度が通常の方法より低いこと、特にエッジ部 での樹脂混入による輝度低下などの課題がある。

3.3 その他の応用例

次にインクジェット技術の有機デバイスへの応用 展開について説明された。

まずは、有機トランジスタとして、有機半導体であ るペンタセンのパターンニングにインクジェットを利 用する例である。ペンタセン溶液は作成が難しくまた 酸化されやすいので、アルゴン雰囲気の元でジクロロ ベンゼンに投入して70 で三日間加熱し、そのままの 温度と雰囲気で保管する。自己整合で薄膜を作成する が、形成時も酸素のない状態が必要である。ゲート絶 縁材は、シリコン樹脂やシクロオレフィン樹脂を使う。 現状移動度は、2.7×10⁻³ cm²/Vs を達成している。

自己整合有機フォトダイオードは、OPD を含むイン クを使い、先と同じように ITO 上の絶縁膜にそのイン ク液滴を打ち込み、カソードで封印する。絶縁膜はシ クロオレフィン樹脂を使う。光導電性材料は、ピラゾ リン系化合物である。スピンコート法より良好な導電 率を得ている。

有機 EL とフォトダイオードの複合素子(Bi-Matrix) の検討を行っている。フォトダイオードと有機 EL を重 ねることで、光吸収と発光を同時に行うことが出来る。 これは、例えばパソコンや携帯のディスプレーとスキ ャナの機能を同時に持たせることができる。

4.終わりに

本協会に参画されている多くの企業は、何らかの形 で総額 10 兆円規模と言われている電子写真機器を主 要ビジネスとされている。一方で、紙媒体に替わる新 規画像技術がどのようになるのかおぼろげながら見え かけている中で、新規技術を模索しているのも確かで ある。有機 EL は、次世代ディスプレーとして期待が高 まっているが、その薄さと自己発光という点では、紙 媒体に近いものがあり、電子写真機器や従来の書籍な ど紙媒体に替わる可能性を秘めている。そのような観 点から、本ご講演は意義あるものであった。また、昨 今ビジネスとしてソフトの重要性が強調される傾向に あるが、時代を変えるような新技術開発は、例えば IC のごとき過去の例と違わず、材料の開発と言うハード 面の確立が不可欠であることを改めて実感した。有機 EL も、ビジネスモデルの模索と材料の研究開発・改良 との両輪がうまく絡まって始めて大きな市場を得るで あろうことは、疑う余地がない。

末筆ながら、ご多忙の中遠方より足を運んでいただ きご講演を賜った岡田先生に、ここに深くお礼申し上 げる次第です。

以上

禁無断転載

2005 年度 ビジネス機器関連技術調査報告書(*I-1"部)

発行 社団法人 ビジネス機械・情報システム産業協会 技術委員会 技術調査小委員会

〒105-0003 東京都港区西新橋 3 丁目 25 番 33 号

N P 御成門ビル4 階

電話 03-5472-1101

FAX 03-5472-2511

<u>有機デバイスの進展と最近のトピックス</u>

富山大学 工学部 岡田 裕之

<u>研究者</u>

吉森 幸一、佐藤 竜一、大榮 政憲、柳 順也、 柴田 幹、中 茂樹、女川 博義 (富山大学) 角本 英俊、竹村 仁志(プラザ東海JST) 宮林 毅、井上 豊和(ブラザー工業)

<u>【講演内容】</u>

. 有機 E L 素子の背景

- .有機EL素子の基礎
- . IJP法とプロセス条件
- .インクジェット法による有機 E L 素子
- . 自己整合隔壁デバイス 簡単、高歩留のプロセス
- .トップエミッション自己整合有機 E L 素子

. 有機デバイスの新展開

<u>. 有機 E L 素子の背景</u>

【<u>有機 E L 素子】</u>

世界初 Sanyo&Kodak アクティブ型フルカラー(2003年)

Pioneer カーオーディオ (2000年)

SONY クリエ 『PEG-VZ90』(2004年)

- •**高速応答** 1 µs
- ・フレキシブル

(Ref) 分子科学と光物理学とのキャッチ ボール:高分子学会編 (2001).

5

<u>【有機 E L 素子の研究開発状況】</u>

- (1) モニター用ディスプレイ トップエミッション構造
 - ・40型 IJPフルカラーパネル (Epson 2004, Samsung 2005)
 - ・20型 a-Si TFT トップエミッション構造 (IDTech&IBM, 2003)

・24.2型 トップエミッション構造 (SONY, 2003)

(2) 携帯端末用モニター 解像度 液晶と同等

• 302 ppi 2.6inch LTPS VGA, LITI Process (Samsung, 2005)

- (3) フレキシブル表示 バリア性に工夫
 - ・3inch フレキシブル表示 SiON被覆, 3g, 0.2mm (パイオニア, 2003)
 - ・りん光 多層バリアコート (Universal Display, Vitex, 2003)

【次世代有機 E L 素子の課題】

- ・60インチクラス ・視感効率 50 lm/W以上
 - ・動画表示・0.2 mm厚

<u>【講演内容】</u>

. 有機 E L 素子の背景

. 有機 E L 素子の基礎

- . IJP法とプロセス条件
- .インクジェット法による有機 E L 素子
- . 自己整合隔壁デバイス 簡単、高歩留のプロセス
- .トップエミッション自己整合有機 E L 素子

. 有機デバイスの新展開

<u>. 有機 E L 素子の基礎</u>

<u>陰極の検討</u>

- •S.Naka et al., Proc. ICEL1, p.90 (1997).
- •S.Naka et al., Synthetic Metals, vol.91,pp129-130 (1997).
- •S.Naka et al., MRS'98 Spring Meeting, p.139 (G8.10) (1998).
- •I.Yamamoto et al., 10 th Int'l. Conf. EL'00, P58 (2000).
- •S.Tabatake *et al.*, Proc. AD/IDW'01, OEL3-4 (2001).
- •中他, 信学技報, OME96-77 (1996).
- •山本他, 信学技報, EID99-78(2000).
- ·為川他, 電気関係学会北陸支部学生会, 4-14 (1995).
- ·山本他, 平成11年秋季応物, 4a-N-5 (1999).
- ·田畠他, 平成12年度春季応物, 29p-ZN-16 (2001).
- ·田畠他, 平成13年度秋季応物, 11p-V-13(2001).
- ·田畠他, 平成14年春季応物, 27p-YL-15 (2002).

【代表的有機EL素子の構造】 蛍光性材料 <u>o</u> Alo Co Alq₃ (500 Å) [>]N 金属電極 N ITO透明電極 正孔輸送性材料 TPD (500 Å) ガラス基板 H_3C CH_2

【素子の特性】

11

【有機EL素子の動作】

【有機EL素子の効率】

EL efficiency*

$$\eta_{\phi}(\text{ext}) = \gamma \eta_r \phi_f \eta_{\text{ext}}$$

* T. Tsutsui, MRS Bulletin, **22** (1997) 39.

<u>【発光に必要な条件(1)-(3)</u>

- (1) キャリアの注入(正孔、電子) ショットキー、トンネル注入
- (2) キャリアの輸送(正孔、電子)
 - TPD $\mu_h \sim 10^{-3} \text{ cm}^2/\text{Vs}$
 - Alq₃ $\mu_e \sim 10^{-6} \text{ cm}^2/\text{Vs}$, $\mu_h \sim 10^{-8} \text{ cm}^2/\text{Vs}$
- (3) キャリアバランス
 - 電子 正孔対によりエキシトン生成可能

(Ref) C. F. Madigan et al: Appl. Phys. Lett., 76(13), 1650 (2000).

<u>【講演内容】</u>

. 有機 E L 素子の背景

- . 有機 E L 素子の基礎
- . IJP法とプロセス条件
- .インクジェット法による有機 E L 素子
- . 自己整合隔壁デバイス 簡単、高歩留のプロセス
- .トップエミッション自己整合有機 E L 素子
- . 有機デバイスの新展開

【有機EL対応インクジェットプリント法の分類】

- (1) 直接インクジェットプリント (D-IJP)法
 T.R.Hebner *et al.*, Appl. Phys. Lett., **72**, 519 (1998).
 K.Yoshimori *et al.*, Proc. 18th. IDRC, 213 (1998).
- (2) ハイブリッド インクジェットプリント (Hybrid IJP)法
 J.Bharathan and Y.Yang, Appl. Phys. Lett., **72**, 2660 (1998).
- (3) 色素拡散法

T.R.Hebner et al., Appl. Phys. Lett., 73, 1775 (1998).

【インクジェットプリント法(2) - Hybrid IJP法】

Polymer Electroluminescent Devices Processed by Inkjet Printing: I. Polymer Light-Emitting Logo J. Bharathan and Y. Yang (University of California-Los Angels)

- ・導電性ポリマバッファ層を印刷し、その部分が低電圧で発光することを利用し ロゴ表示する。
- ・低電圧発光部 ITO/polyethylenedioxy thiophene (PEDOT)/MEH-PPV/Ca 高電圧発光部 ITO/MEH-PPV/Ca

Appl. Phys. Lett., 72, 2660 (1998).

【インクジェットプリント法(3) – 色素拡散法】

Local Tuning of Organic Light-Emitting Diode Color by Dye Droplet Application T.R.Hebner and J.C.Strum (Princeton University)

・ 色素含有液滴をIJP法で印刷し、発光色を変化させる方法

Appl. Phys. Lett., 73, 1775 (1998).

【各種製造プロセス要因と特徴】

プロセス要因	蒸着法	各種新方式								
		スピン コート	スク リーン	MG	拡散	スタンプ	スプレイ ペイント	スリット コート	気相 成長	IJP
タクトタイム	\triangle	0	0	0	Δ	0	0	0	Δ	0
材料利用率	×	\bigtriangleup	0	0	Δ	0	0	0	Δ	0
膜厚制御·均一性	0	0	Δ	Δ	Δ	0	0	0	Δ	Δ
高精細フルカラー化	Δ	∆‰2	0	Δ	Δ	× %3	Δ	∆‰2	0	0
大面積対応	Δ	Δ	0	0	0	0	0	0	0	0
発光特性	Ø	0	Δ	0	Δ	0	0	0	?	0
信頼性 ※1	0	Δ	Δ	Δ	Δ	× _{%3}	Δ	Δ	?	Δ

※1 蒸着法を基準 ※2 リソグラフィの併用 ※3 方法に依存

溶液系の方式は、溶媒使用上の工夫が必要

【インクジェット方式の分類】

(Ref.) 清弘: 「インクジェット技術の基礎と応用」, トリケップス技術資料 (2003).

【ピエゾ方式の一例】

- Unimolf型
 チャンバ両側のピエゾ素子で
 圧力波を発生しインクを塗出
- ・Zaar<mark>型</mark> チャンバ側壁を湾曲させインクを塗出

【インクジェット条件】

<u>ノズル</u>・型 <u>インク</u>・インク量 <u>印加波形</u>・電圧 ・サイズ ・粘度 ・周波数

・間隔

・波形形状

【インク条件】

<u>イン</u>	<u>ク</u> ・インク量 数~数10 pl ・粘度 数~10 cp程度 ・乾燥速度
<u>C6/PVCz</u>	室温 <30 秒 ドロップ径が一定 >30 秒 ドロップ径の減少
<u>溶媒</u>	40 >70 秒 ドロップ径の減少 クロロベンゼンが粘性の関係で良い
<u>均一性</u>	PVCz+ アセトン フラットな膜 PVCz+DVD+ アセトン 不均一 PVCz 上への DMSO:C6 非常に良好

J. C. Strum et al., Mat. Res. Soc. Spring Meet., S4.1 (2000).

27

【ドロップレット形成(1)】

<u>ドロップレットと電圧依存</u>

[条件] ノズル径 50 µm、溶液量 25 pl

J. C. Strum et al., Mat. Res. Soc. Spring Meet., S4.1 (2000).

S. A. Elrod, J. Appl. Phys., **65(9)**, 3441 (1989).

29

S. A. Elrod, J. Appl. Phys., 65(9), 3441 (1989).

(Ref.) T. Kawase et al., SID 01 Digest, 6.1 (2001).

32
【インクジェット法による膜形成】

<u>【講演内容】</u>

- . 有機 E L 素子の背景
- .有機EL素子の基礎
- . IJP法とプロセス条件
- .インクジェット法による有機 E L 素子
- . 自己整合隔壁デバイス 簡単、高歩留のプロセス
- .トップエミッション自己整合有機 E L 素子
- . 有機デバイスの新展開

・大榮他,平成15年春季応物,27p-A-5 (2003).
・佐藤他,平成15年秋季応物,31p-YL-10 (2003).
・大榮他,2003年電情通ソサイアティ大会,SC-5-1 (2003).
・M. Ooe *et al.*, IDW'03, OEL3-4 (2003).

【初期に使用した装置】

【最小ドットのラインとAFM観察】

200 *µ* m

【インクジェットプリント装置(2)】

ブラザー工業㈱製

■セラミック製 ノズル128個
 ■ピエゾ素子駆動
 ■ノズル径 40 µm
 ■解像度 150 dpi
 ■ピエゾ駆動周期 0.1~1 kHz
 ■インク液滴量 50 pl

【基板表面観察 [光学顕微鏡]】

【基板表面観察 [AFM]】

42

<u>【デバイス特性例: J-V、L-J特性】</u>

【**Ⅳのまとめ】**

インクジェットプリント法を用いた有機EL素子を検討した

塗布溶液 混合による基板ぬれ性、乾燥性が変化 連続塗出で重ね塗り可能						
デバイス特性 最高輝度 EL効率 外部量子効率	18,900 cd/m² 4.3 lm/W 8.9 %					

<u>【講演内容】</u>

. 有機 E L 素子の背景

- .有機EL素子の基礎
- . IJP法とプロセス条件
- .インクジェット法による有機 E L 素子
- . 自己整合隔壁デバイス 簡単、高歩留のプロセス
- .トップエミッション自己整合有機EL素子
- . 有機デバイスの新展開

<u> 【材料系の検討 – 高分子系と低分子系の比較】</u>

<u>高分子材料系</u>

溶媒に溶けやすい

精製が難しい

鎖長、形状の制御が難しい →→ 特性の不均一化

色再現性に乏しい

素子寿命が短い

低分子材料系

溶媒に溶けにくい 高純度材料を得やすい(精製、構造) 高輝度、高効率

色再現性が大きい

素子寿命が長い

【低分子材料系の溶解性】

		Material	chloroform	tetrahydrofuran	Tetralin	1,2- dichloroethane	ethyl lactate	mesitylene	
	ETL	Alq3	×	×	×	×			
		BCP	0	×	0	Δ	×		
		BND	0	0	0	0			
		BPhen	0	×		0	0		
		CBP	0	Δ		Δ	×		
		PyPySPyPy	0	0	0	0	×		
		tBu-PBD	0	0	0	0	0		
		TPD	0	0	0	0	×	0	
	нті	a-NPD	×	×	0	×			
		TAPC	0		0				
		PVCz	0	0	0	0			
		C6	0	0	0	0		0	・
		Ir(ppy)3	Δ	Δ		Δ	×		
	FM	FIrpic	0		0				高温で溶解またけ難溶
	2.00	(btp) ₂ lr(acac)	0		0				
		Ir(tpy)3	0	0	0				x · 不溶
		DCJTB	0		0				*** 174
	Insulator	PMMA	0	0	×				
		Cyclolefin	Δ	×	0				
		PVP		0					
		Cyanoresin		Δ					
		PPR	0	0	0				
		MEH-PPV	0	0	0				
		P3HT	0	0	0				
		H-2	0	0	0				
	PD & Organic Materials	BPPC	0	0	Δ				
		td-PTC	×	×	×				濃度1 Wt%
		CuPc	×	×	×				
		PTCDA	×	×	×				
		BTBP	O(0.2wt%)		×				
		Fluorescein	×	0	×				
		Perylene	O(0.2wt%)	0	O(0.4wt%)				
	TPD+CBP+Ir(ppy)3		0			Δ			
	CBP+	⊦lr(ppy)3	0			Δ			

【キーポイント – 低分子材料を使用する工夫】

(1) トリフェニルアミン誘導体の採用

非晶質化、突起・クラックの低減

- ・TPD蒸着膜は非晶質となる
- ・TPDを加熱すると、溶液状態となる
- ・Alq3、 tBu-PBD等、結晶化しやすい材料が有る

(2) 加熱溶液の使用

難溶性材料の溶液化

・低分子系材料は、高分子系材料と比較して 有機溶剤に溶けにくい

> 溶液プロセスでは材料を均一に混合できる

Anode /PEDOT/ α -NPD+CBP+Ir(tpy)₃/BCP(20nm)/LiF(1nm)/AI(70nm)

【寿命特性 - 陽極の検討-】

54

【自己整合デバイス構造】

56

【通常IJP素子と自己整合素子の特性比較】

【特性低下についての考察】

【材料分布モデル】

【まとめ】

<u>低分子系有機材料を用いた</u>

IJP法による自己整合有機EL素子を検討した

 \succ α -NPD混合により結晶化の抑制が出来た。

- りん光発光素子とホールブロック層の組合せで、 蒸着系と同等の素子性能を得た。
- 平坦性、陽極、溶液効果を検討し、1000 cd/m²
 での輝度半減時間 60 hrを得た。
- 自己整合隔壁を有する低分子系素子を作製し、
 輝度 9,100 cd/m²、外部量子効率 3.1 %を得た。
- ▶ 自己整合発光部でのPMMAの偏在を示した。

<u>【講演内容】</u>

. 有機 E L 素子の背景

- .有機EL素子の基礎
- . IJP法とプロセス条件
- .インクジェット法による有機 E L 素子
- . 自己整合隔壁デバイス 簡単、高歩留のプロセス
- .トップエミッション自己整合有機 EL素子

. 有機デバイスの新展開

【背景】

 高開口率のアクティブ型パネル ボトムエミッションでは、アクティブ素子 による開口率低下が問題

自己整合隔壁を有する トップエミッション有機EL素子

【検討項目 - 有機材料の溶解性-】

	Material	Chloroform	Tetrahydrofuran
HTL	TPD	0	0
	a-NPD	Δ	×
ETL	ETL BCP		×
	tBu-PBD	0	0
EM	Ir(ppy) ₃	Δ	×
Insulator	PMMA	0	0

【溶媒の条件】・絶縁膜塗布時に下層BCPが溶けない
 ・下層BCPが溶けず、インクや絶縁膜が溶ける

※ 2 wt%時の溶解性. 但し、色素材料は0.2 wt%

 $Ink \rightarrow tBu-PBD : Ir(ppy)_3 = 95 : 5$

1 wt% Chloroform

AINd / BCP / PMMA <- Ink(tBu-PBD: $Ir(ppy)_3$) / α -NPD(50nm)/MoO₃(50nm)/IZO(120nm)

【輝度のショット数依存性】

 $Ink \rightarrow tBu-PBD : Ir(ppy)_3 = 95 : 5$

1 wt% Chloroform

AINd / BCP / PMMA <- Ink(tBu-PBD: $Ir(ppy)_3$) / α -NPD(50nm)/MoO₃(50nm)/IZO(120nm)

67

4 shots

<u>5 shots</u>

【パターン発光】

自己整合プロセスによる、トップエミッション型のロゴマーク発光

解像度: 300 ppi

輝度: 100 cd/m²

3 cm

【トップエミッション自己整合有機EL素子のまとめ】

- インクの重ね打ち
 - ▶ 重ね打ちで絶縁材料とインク混合比率を変化した
 - ▶ 3回重ね打ち で最適特性を得た
 - 最高輝度: 1,000 cd/m²
 - 解像度: 300 ppi

【謝辞】AINdを御提供いただいた株式会社コベルコ科研様に感謝致します.

【講演内容】

- . 有機 E L 素子の背景 I J P 法の位置付け
- . 有機 E L 素子の基礎
- . IJP法とプロセス条件
- .インクジェット法による有機 E L 素子
- . 自己整合隔壁デバイス 簡単、高歩留のプロセス
- .トップエミッション自己整合有機 E L 素子
- . 有機デバイスの新展開
 - -1 ペンタセンのIJPによるパターニング
 - -2 自己整合有機フォトダイオード
 - -3 有機 E L / P D 複合集積デバイス

【VII-1 ペンタセンのIJPによるパターニング】

(発表)

- •有沢:平成15年度富山大学学士論文(2004)(非公開).
- •有沢,兵藤,中,岡田,女川:平成16年秋季応物、2p-ZR-2 (2004).
- •角本, 井上, 宮林, 中, 岡田, 女川: 平成16年秋季応物、2p-ZR-3 (2004).
- •有沢,角本,兵藤,中,岡田,女川,宮林,井上:電子情報通信学会 技術報告,OME2004-101 (2004).

【背景】

【課題】・有機層のパターニング

(1) 有機膜へのキャリア蓄積による素子間リーク、バックゲート効果

(2) 有機半導体層による透過率低下可視光吸収による着色

【塗布系パターニング工程の例】

塗布法による有機半導体膜の形成

·高分子系

P3HT

•移動度 ~0.1cm²/Vs の報告

H. Sirringhaus et al.: Nature, 401, 685 (1999).

・IJP法によるAll Polymer トランジスタ

T. Kawase et al.: SID'01 Digest, 40 (2001).

•低分子系

Pentacene

・加熱状態基板上への形成

南方他:第51回春季応物、29a-ZN-5 (2004).

•液晶/Pentacene混合系からの結晶化

藤掛他:2004年日本液晶学会討論会、2B04 (2004).

IJPによる有機トランジスタのPentacene パターニング技術について報告する

・ペンタセンの溶液化法 ・組成分析、塗布状況 ・デバイス評価

【使用した有機材料】

【ペンタセンの溶液化】

ジクロロベンゼン溶媒を用いた場合

酸化された ペンタセン溶液

条件溶液濃度•••0.1wt%に設定攪拌時間•••48時間攪拌

キーポイント 溶解温度・

溶媒の脱気

光遮断

- ・・・ 70℃で保温
- ・・・ 酸素を脱気しアルゴン封入
- ・・・・外光を遮断

【マスクロマトグラフ】

308	308 增加	
294	²⁹⁴	
278	→	
	→ 1000 6hr大	 1000 気&光暴露

成分	溶解直後	6hr大気& 光暴露
ペンタセンジオン	0.36	0.41
ペンタセンモノオン	0.28	0.31
ペンタセン	0.36	0.28
ペンタセンジオン ペンタセンモノオン ペンタセン	0.36 0.28 0.36	<u>元泰路</u> 0.41 0.31 0.28

ジクロロベンゼン溶媒

78

【デバイスの断面構造及び塗布画像】

【ゲート絶縁膜上のペンタセン塗布状況】

【デバイス評価と検討】

【まとめ】

有機トランジスタのPentaceneパターニング技術について報告した

【講演内容】

- . 有機 E L 素子の背景 I J P 法の位置付け
- . 有機 E L 素子の基礎
- . IJP法とプロセス条件
- .インクジェット法による有機 EL素子
- . 自己整合隔壁デバイス 簡単、高歩留のプロセス
- .トップエミッション自己整合有機 E L 素子
- . 有機デバイスの新展開
 - -1 ペンタセンのIJPによるパターニング
 - -2 自己整合有機フォトダイオード
 - -3 有機 E L / P D 複合集積デバイス

【自己整合隔壁プロセス】

 OPD材料を含むインクを用い、
 ■絶縁膜 — 真空 60 ℃、1時間ベーク

 自己整合プロセスを行う。
 ■IJP後

86

【顕微鏡観察】

100 µm

210 µm

【AFM観察】

607.13

[nm]

0.00

<u>A-B</u>

46.04 [µm]

エッジの高さ	:632 nm
ドットの幅	:92 µm

Chloroform (1wt%)

89

【素子特性】

90

【まとめ】

【講演内容】

- . 有機 E L 素子の背景 I J P 法の位置付け
- . 有機 E L 素子の基礎
- . IJP法とプロセス条件
- .インクジェット法による有機 EL素子
- . 自己整合隔壁デバイス 簡単、高歩留のプロセス
- .トップエミッション自己整合有機 E L 素子
- . 有機デバイスの新展開
 - -1 ペンタセンのIJPによるパターニング
 - -2 自己整合有機フォトダイオード
 - -3 有機 E L / P D 複合集積デバイス

<u>-3 有機EL/PD複合集積デバイス</u> (Bi-Matrix)

•Y. Matsushita et al.:Ext. Abstr. SSDM, 168 (2004).

- •松下他:平成16年春季応物, 28p-ZQ-6 (2004).
- •Y. Matsushita et al.: Jpn. J. Appl. Phys., 44(4B), 2826 (2005).
- •島田他:平成17年春季応物, 30p-YL-11 (2005).

【積層構造素子】

<u>【研究目的】</u>

OLEDとOPDを同一基板上に作製し、独立動作させる

二つの複合機能を有する

"Bi-Function Matrix Array (Bi-Matrix)"

<u>応用例</u> ● ディスプレ

- ディスプレイ/スキャナ複合ノートPC
- ディスプレイ/スキャナ複合携帯電話
 - •••etc.

■積層デバイスの評価

- 透明OLED特性
- OPD特性
- プロトタイプ 4×4 Bi-Matrixの試作
 - OLEDマトリクス駆動
 - OPDマトリクス駆動

■中間透明電極 ··· Indium-Zinc-Oxide (IZO) (出光興産)

【プロトタイプ 4×4 Bi-Matrix】

Bi-Matrix OLED

全面点灯

パターン点灯

マトリクス動作確認

104
【Bi-Matrix OPD駆動方法】

(µA/cm²)

<u>【Bi-Matrix OPD動作の検証】</u>

17	1	20	2
0.3	22	0.3	17
18	2	21	0.3
0.7	19	0.3	21

Xenon Lamp (23 mW/cm²)

パターン検出確認

【更なる改善 一複合機能材料探索 – 】

• 発光·受光材料

4-[2-[5-[4-(Diethylamino)phenyl]-4,5-dihydro-1-phenyl-1H-pyrazol-3-yl]ethenyl]-N,N-diethylaniline (PPR)

全面点灯 (印加電圧 7 V、輝度 600 cd/m²)

マトリクス発光確認

パターン検出確認

【<u>有機EL/PD複合集積化のまとめ】</u>

複合機能マトリクスアレイ(Bi-Matrix)について検討した

●TOLEDとOPDの積層構造の独立動作を確認した

●プロトタイプ 4×4 Bi-Matrixを実現した

●ピラゾリン誘導体単層構造で、発光・受光の両機能を実現した
●4×4 Matrixを作製し、OLED/PDの独立動作を確認した

【謝辞】AINdを提供いただいた株式会社コベルコ科研様に感謝いたします.

(社) ビジネス機械・情報システム 産業協会講演(05.07.19)

(社) ビジネス機械・情報システム 産業協会講演(05.07.19)

・蒸着法を用いないラミネート法により有機EL素子を試作する
 ・最高輝度 1,000 cd/m²を超える発光を得た

(社) ビジネス機械・情報システム 産業協会講演(05.07.19)

【
 目指す研究展開】

- (1) 大面積化 Roll-to-Rollプロセス
- (2) 簡易パターニング IJP法
 発光ポスター
 ショーウインドウディスプレイ
- (3) 新規材料の探索低分子系、安定性向上、複合機能性
- (4) フレキシブル化

