X線による可視化及びシミュレーションを用いた現像器内現像剤の挙動解析

<u>斎藤 和広</u>*,伊藤 孝幸**,加川 哲哉***,髙田 洋朗***,

村内 淳二**,加藤 智宏**,出水 一郎**

コニカミノルタビジネステクノロジーズ株式会社

PP製品開発センター*,要素技術開発センター**,開発イノベーションセンター***

1. はじめに

トナーとキャリアから成る現像剤を用いた2成分現 像方式は、現像、層形成、循環、撹拌が主な機能であ る。近年、長寿命化が求められる中、規制部において は、現像剤への負荷軽減の技術開発が求められている。 層形成機能に関する技術開発は、規制部近傍で現像剤 を供給、規制する現像剤挙動、現像ローラーから現像 剤を剥離する現像剤挙動を把握することが重要であり、 そのために現像剤の挙動の可視化が有効である。

規制部の現像剤挙動について、シミュレーションに よる流動解析結果を可視化によって示した報告¹⁾はあ るが、ある程度計算負荷の低減も考慮してモデル化さ れた粒子の流動性が、実際の現象を再現しているかの 判断は難しい。

一方、現像剤挙動を可視化する手段として、X 線透 過装置による観察が検討されている²⁾。現像剤の主成 分である鉄は、樹脂製の現像器ハウジングよりもX線 の吸収係数が高く、現像剤が存在する箇所を濃く撮影 することができる。しかしながら、現像剤自体はX線 吸収係数が均一なため、液面状態の確認はできるもの の、現像器内部の流動確認ができない。一般的に、流 体力学などではトレーサーが用いられる。トレーサー として鉄よりX線吸収係数の高い粉体を用いると、現 像剤よりも濃く撮影される。X線で撮影された動画上 で、その箇所を追跡することによって、現像器内の現 像剤挙動を観察できる。

本報告では、現像器内現像剤の挙動解析を目的とし、 X線による可視化を行い、撮影された X線画像を基に シミュレーションに用いるパラメーターの同定を試み た。その一般性を確認するため、複数の現像器構成を 用い、X線画像とシミュレーションの相関を検証した。

2.1. シミュレーション

加川らの報告¹⁾による粒子法を用いたシミュレーションを行った。以下に、内容を簡単に説明する。

現像プロセス領域で主に利用されている個別要素法 では粒子数が多く計算時間が膨大になる。そのため、 現像剤を流体近似した。一般的には流体解析に格子法 を用いるが、数値拡散の回避や、計算時間短縮のため、 本シミュレーションでは粒子法を用いた。粒子法を用 いると計算メッシュを作成する必要がないメリットも ある。 粒子法には SPH (Smoothed Particle Hydrodynamics)法を用いた。粒子jが座標 x_j に存在し、 質量 m_j を有するときの密度分布を(1)式に示す。

$$\rho(x) = \sum_{j=1}^{N} m_{j} W(x - x_{j}, h)$$
(1)

偏微分方程式に使用する任意の変数 f の分布を式 (2)に示す。

$$f(x) = \sum_{j=1}^{N} \frac{f_{j} m_{j}}{\rho_{j}} W(x - x_{j}, h)$$
(2)

W はカーネル関数である。現像剤は(3)式に示す塑性流体として扱う。

$$\mu = \mu_r \qquad \left(\dot{\gamma} \le \frac{\tau_y}{\mu_r - \mu_0}\right)$$

$$\mu = \mu_0 + \frac{\tau_y}{\dot{\gamma}} \qquad \left(\dot{\gamma} > \frac{\tau_y}{\mu_r - \mu_0}\right) \tag{3}$$

ここで、 μ は粘度、 γ はずり速度、 μ_0 は塑性粘度、 μ_r は立ち上がりの粘度、 τ_y は降伏応力とする。せん断応力が降伏値以下では流動しないことを表す。

現像剤の磁界中での振る舞いを考慮するため、(4) 式で表す力を磁性体粒子に見立てた計算点に付加した。

$$f_j = (p_j \cdot \nabla) B_j \tag{4}$$

ここで、 p_j は粒子jの磁気双極子、 B_j は粒子jの中 心における磁束密度、 f_j は粒子jの磁気双極子 p_j の受 ける力とする。

Fig.1 Flow chart to simulate behavior of developer.

2.2. X 線透過動画撮影

Fig.2を用いてX線透過動画撮影の方法を説明する。

Fig.2 Schematic of radiographic X-ray equipment.

X線源から発生した X線は測定対象物を透過する過 程で吸収され I.I.管(イメージインテンシファイア) 表面に到達する。I.I.管で可視光に変換、増幅された 画像を CCD で撮影することで、現像器内の観察が可能 となる。測定対象物がもつ吸収率の違いから画像のコ ントラストを得ることが出来る。X線透過装置は東芝 IT コントロールシステム社製を用いた。 現像剤中の流動挙動を追跡するためには、現像剤と 同じ挙動を示し、且つコントラストが得られるよう X 線吸収係数が高いトレーサーが必要となる。

初期検討段階では重金属を含む粉体などを使用し、 比重により調整したが、現像剤とは明らかに異なる挙 動を示した。そのため比重以外のパラメーターも加え てトレーサーの最適化を行った。Fig. 3 に最適化実験 で行った沈降実験の様子を示す。特に、規制部周辺の ように流れが緩やかな領域では、重要な特性である。 実験はビーカーに充填した現像剤表面にトレーサーを 載せ、一定の時間、振動を加えた後の沈降量を評価し た。トレーサーA は振動による沈降量が大きく不適合 な例であり、トレーサーB は振動による沈降が見られ なかった。

Fig.3 Example of sedimentation test for tracer particle optimization; (a) improper tracer, (b) optimized tracer.

3. 規制部における可視化

3.1. シミュレーション結果の可視化

2.1. の手法を用い、シミュレーションを実施した。 計算に用いた2成分現像器構成の一例をFig.4に示す。 規制部周辺の挙動を予測するために、現像器の中央断 面をモデル化した。スクリュー(Sc)の回転及び磁力 により、現像剤は現像剤量を制御する規制部に供給さ れ、順に現像ローラー上を搬送され、最下流で現像ロ ーラーから剥離され、現像器に回収される。計算時間 を考慮して、流体近似した計算上の粒子点間隔は 400 µm とした。計算時間刻みは 20µs とし、計算精度を 確保しつつ、データの書き出し刻みは 2ms とし、デー タ書き出しによる時間ロスを避けた。粒子1個1個の 2次元データを書き出し、Fig.4に示す画像として表現

第Ⅳ章 注目技術

した。画像1つ1つをつなげることによって、動画と して現像剤挙動を観察できる。フレーム間隔が2msで あれば、目視で十分滑らかな動画となり、現像剤挙動 を概ね把握できる。Sc 回転数を6rps として計算する と、Fig. 4の下図に示すSc の位相変化はフレーム間に 4.32°となる。

Fig.4 Model of developing unit and means for making animation.

3.2. X線透過装置による可視化

X 線は物質の吸収係数と通過する距離に依存して吸 収されるため、実際の現像器では、可視化したい領域 に対して通過距離が長過ぎるという課題がある。また、 X 線は線源から円錐状に広がるため、鮮明な断面像を 得るには被写体の奥行き寸法は短い方が望ましい。一 方、現像器は端部付近の流れが壁面の影響で中央付近 と異なる流れを示す。そこで、本実験では、Fig. 5 に 示す断面寸法に対する適切な奥行き比率の現像器を作 成した。

Fig.5 Schematic of filming equipment and object.

Fig.6 Snapshot of regulating area by X-ray radiography.

その結果、規制部近傍で現像剤中のトレーサーの流 れを可視化することに成功した。Fig. 6 に示す規制部 近傍を拡大した写真の黒点がトレーサー、その周りが 現像剤である。

また、現像剤の影からも現像器設計に重要な情報を 得ることができる。規制部に現像剤を供給している状 態に着目すると、Fig. 7 の現像器構成では、ラインで 示す現像剤液面が動画上で Sc 周期の変動をしている ことがわかった。ここで、下矢印は現像剤が剥離され る軌跡を示す。上矢印は、規制部近傍に現像剤の溜ま りがなく、現像剤が現像ローラーに吸い込まれるよう に供給されている様子を示す。上矢印が発生する状態 では、現像ローラーへの現像剤供給が不安定となり、 Sc ムラが発生すると考えられる。このように X 線動画 により現像剤挙動を可視化すれば、画像品質を予測す ることが可能となる。

Fig.7 Observation of developer fluid level by X-ray radiography.

一方、X線透過撮影ではX線源のゆらぎや検出器の
感度ばらつきによって、X線動画にちらつきが発生し、
粒子画像流速測定法 (Particle Image Velocimetry)
や粒子追跡速度計測法 (Particle Tracking Velocimetry)といった定量的に流れを計測する技術の
適用が困難という課題もある。

4. シミュレーションのパラメーター取得

本シミュレーションでは現像剤を流体近似している ため、現像剤粒子としての現像ローラーとの摩擦係数 や空気抵抗などが使用できない。これらは現像剤挙動 のシミュレーションを行う上で必要だが測定困難なた め、X線透過動画を利用し、各パラメーターを同定し た。

複数のパラメーターを最適化するために直交表を使用し調整した結果、現像剤剥離の軌跡は Fig. 8 の矢印で示す X 線動画と合わせ込むことができた。

Fig.8 Comparison of angle of departure between X-ray imaging and simulation.

改良したシミュレーションの一般性を確認するため、 現像ローラーや現像器構成に関するパラメーターの水 準を振った 6 個の現像器を作製した。X 線透過撮影に て実物確認を行うと同時にシミュレーションも行った。 Fig. 8 に示す角度を剥離角度として、6 つの現像器の計 測結果を Fig.9 のグラフにプロットし、X 線透過とシミ ュレーションの相関を表した。 Fig.9 Correlation of angle of departure by X-ray and simulation.

相関を評価するために、相関係数 r を求めた。相関 係数 r=0.978 となり、X 線動画とシミュレーションの 対応を確認できた。

また、規制部近傍の現像剤挙動について、X 線動画 とシミュレーション動画を比較した。X 線動画のトレ ーサーの動きは Fig. 10 の上図に示す流れであった。 シミュレーション動画上の現像剤の流れは、パラメー ターの取得によって、Fig. 10 の(a)から(b)へ改良され、 X 線動画と同じ挙動を示すことを確認できた。

Fig.10 Comparison of trajectory of developer flow between X-ray imaging and simulation; (a) default, (b) after improvement.

5. まとめ

X 線透過装置を用いて、トレーサーや現像器を最適 化することにより、規制部近傍の現像剤挙動を可視化 することが可能となった。

粒子法を適用したシミュレーションにより、規制部 の現像剤挙動の予測が実用レベルであることが確認さ れた。

今後、シミュレーションの活用により、特に開発初 期の設計段階では、試作レスによる開発効率の向上が 期待できる。一方、開発中盤以降の課題発生時では、 実機が存在しているため、X線撮影の方が効率的であ る。X線を用いた可視化技術の更なる向上による、実 機サイズでの現像剤挙動の観察が望まれる。

参考文献

- 加川 哲哉,村内 淳二,斎藤 和広,高
 田 洋朗,芝田 兆史: 現像剤の運動挙動への粒
 子 法 シミュレーションの 適用, Imaging
 Conference JAPAN 2010 論文集,日本画像学会,
 pp. 271-274(2010).
- 内田圭亮 岡本孝司:スクリュー搬送機内 粉体の X線可視化画像による拡散係数測定,可視 化 情報学会論文集, Vol. 27 No. 5, pp. 23-30(2007).

尚、本稿は日本画像学会"Imaging Conference JAPAN 2011"論文集からの転載である。本稿の著作権は日本 画像学会が有する。

禁 無 断 転 載 2011 年度「ビジネス機器関連技術調査報告書」"IV−7"部

発行 2012年4月

一般社団法人 ビジネス機械・情報システム産業協会(JBMIA)
 技術委員会 技術調査小委員会

〒105-0003 東京都港区西新橋三丁目 25番 33号 NP 御成門ビル 電話 03-5472-1101(代表) / FAX 03-5472-2511